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To understand the source of discrepancy in the qualitative trends in the reactivity of the spherically confined atoms/
ions when the high pressure is generated through the use of a proper Dirichlet boundary condition [J. Chem. Sci.
2005, 117, 379; Phys. Chem. Chem. Phys. 2008, 10, 1406] and of a cutoff function [Chem. Phys. Lett. 2003, 372,
805; J. Phys. Chem. A 2003, 107, 4877], a modified Herman-Skilman program is run. Results obtained from
different formulas of reactivity parameters are analyzed. Change in reactivity for different electronic configurations
is also reported. It is observed that the use of different formulas is the major source of discrepancy and not the
Dirichlet condition, although the latter is highly recommended. As the cutoff radius of the confining spherical box
decreases, the energy of the atom/ion increases, the electronegativity decreases, and the hardness increases and
ultimately slightly decreases in an ultraconfined situation. For small RC values, softness decreases and electrophilicity
increases and attains relatively small values. The reactivity of confined atoms/ions is put in a proper perspective.

1. Introduction

The effect of spherical confinement on the chemical reactivity
of many-electron systems has been studied in recent years.1-4

Quantization is the effect of boundary, and hence the use of the
proper boundary condition is important in quantum mechanics.
Nonrelativistic Hartree-Fock-Slater calculations have been
performed1,2 to study the confined atoms/ions, where the boundary
condition has been implemented via a cutoff function method and
the reactivity parameters have been calculated using appropriate
density functional quantities. Nonrelativistic spin-polarized Kohn-
Sham equations with the Perdew-Wang exchange-correlation
potential have been solved, and the energies of N- and (N ( 1)-
electron systems have been used in ref 3, and a potential barrier
approach has been used wherein the energies of the frontier
molecular orbitals have been used in ref 4. The Dirichlet boundary
condition has been used in both of these papers. It may be noted
that there hardly exists any result until date on the reactivity of
confined many-electron systems with quantitative accuracy. To
understand the chemical aspects of confinement, readers may look
into the ref 4b and the special issue of Phys. Chem. Chem. Phys.
on “Molecules in Confined Spaces” where it has appeared. Global
reactivity descriptors such as electronegativity5-7 (�), hardness8-11(η),
and electrophilicity12-14(ω) have been defined within a conceptual
density functional theory15-18(CDFT)-based framework. For an
N-electron system with total energy E, electronegativity7 (�) and
hardness11(η) have been defined as

and

In eqs 1 and 2, µ is the chemical potential (Lagrange multiplier
associated with the normalization constraint in DFT19), V (r) is the
external potential, and S is the softness.

The global electrophilicity index12 (ω) has been defined
as

A finite difference approximation to eqs 1 and 2 would
yield

and

where I and A are the ionization potential and the electron
affinity, respectively.

One may obtain � and η starting from the expression of the
energy functional of DFT19 as

where F[F (r)] is the Hohenberg-Kohn universal functional of
the electron density F (r). A local density form of F[F ] was
previously used as1,2
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where CK ) (3/10) (3π2)2/3 and CX ) (3/4) (3/π)1/3. The above
expression comprises functionals related to a first-order gradient-
corrected Thomas-Fermi kinetic energy, Dirac exchange
energy, a Wigner-type local correlation energy, and the classical
Coulomb repulsion energy. A second-order functional derivative
of F[F (r)] provides a hardness kernel20 as

which may be used to calculate the global hardness as20

where f (r) is the Fukui function given by21

Within a local model prescribed by Fuentealba,22 f(r) may be
calculated using the local softness, s(r) expressed in terms of
η (r, r′).

Electronegativity (�) may be obtained as23

where rC defines a point (a measure23 of the covalent radius of
an atom) where the total electrostatic potential is equal to the
chemical potential (originally prescribed by Gordy24) as the sum
of functional derivatives of kinetic and exchange correlation
energies with respect to F (r) is zero at that point, vide the
Euler-Lagrange equation,

In the present work, we compare the two different approaches
for calculating the reactivity parameters and also see the effect
of two different ways of incorporating the effect of confinement.
Section 2 presents the numerical details, and Section 3 discusses
the results obtained. Finally, Section 4 contains some concluding
remarks.

2. Numerical Details

Numerical solution is launched with the solution of the
nonrelativistic Hartree-Fock-Slater equation for atoms and
ions within the standard Herman-Skillman code.25 This pro-
vides the self-consistent field (SCF) wave functions. The effect
of confinement and subsequently that of high pressure on an
atom/ion is simulated in two different ways: (A) In the first

Figure 1. Plots of total energy (E, au) versus cutoff radius (RC, au) for N (green s) and N+ (wine s) confined in a spherical box.
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Figure 2. Plots of electronegativity (�, au) versus cutoff radius (RC, au) for N (blue s) and N+ (red s) confined in a spherical box.

Figure 3. Plots of hardness (η, au) versus cutoff radius (RC, au.) for N (wine s) and N+ (blue s) confined in a spherical box.
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Figure 4. Plots of softness (S, au) versus cutoff radius (RC, au) for N (red s) and N+ (violet s) confined in a spherical box.

Figure 5. Plots of electrophilicity (ω, au) versus cutoff radius (RC, au) for N (blue s) and N+ (magenta s) confined in a spherical box.
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method, the SCF wave function is multiplied by a step function
of the form Θ ) exp [(-r/RC

)λ], as suggested by Boeyens.26

Here RC is the cutoff radius of the spherical box on whose
surface the wave function vanishes,26 and λ is a parameter whose
value is taken to be 20, as suggested by Boeyens.26 In this
method, the step function (cutoff function) is used before
normalization and during each iteration cycle. (B) In the second
method, the confinement is incorporated by using an appropriate
Dirichlet boundary condition so that the wave function goes to
zero at the cutoff radius, RC. Because the boundary condition
is a part of the variational optimization, method B is definitely
superior to the method A. Once we obtain the wave function
or density by solving the Herman-Skillman program modified
as in A and B, reactivity parameters are calculated. We would
like to emphasize that the main aim of the present work is not
to provide exact numbers but to check and to compare the
qualitative trends vis-à-vis to highlight the importance of the
Dirichlet boundary condition (method B) versus that of the cutoff
function method of Boeyens (method A). We compare the
following quantities: the energy (E), electronegativity (�),
hardness (η), softness (S), and electrophilicity (ω). The energy
is calculated by incorporating the self-consistent Hartree-Fock-
Slater density in eq 6 in all four cases. The Hartree-Fock-Slater
energy is not used because we would like to check the effect of
different boundary conditions vis-à-vis different ways of
calculating reactivity parameters. The effect of varying the

energy functionals (already done in refs 1-4 taken together)
may be tried as a separate research problem altogether. Two
different approaches have been adopted in calculating the
reactivity parameters: (1) Electronegativity (�) is calculated
using the Gordy’s prescription (eq 11), and hardness (η) is
calculated as a density functional (eq 9) wherein the f(r) is
calculated using the Fuentealba’s prescription22 and they are
used to calculate the other parameters. (2) Electronegativity (�)
and hardness (η) are, respectively, calculated using eqs 4 and
5, where I and A are obtained through the standard ∆SCF
method using the energies of the M- and (M ( 1)-electron
species. It may be noted that whereas refs 1 and 2 correspond
to an A-1-type technique, refs 3 and 4 correspond to a B-2-
type technique. In the present work, we obtain the parameters
from an A-2- and a B-1-type techniques as well. Because the
qualitative trends do not vary much1,2 in atoms and their cations
and it is not straightforward to calculate anions or unoccupied
molecular orbitals in a Herman-Skilman program for approach
2, we restrict only to a cation. For the approach 1, we calculate
both the atom and its cation. We consider nitrogen to be a
representative test case. To be precise, we adopt four numerical
techniques as follows:

A-1 Technique. Boeyens cutoff function method. Reactivity
parameters are calculated using eqs 9 and 11.

Figure 6. Plots of total energy (E), electronegativity (�), hardness (η), softness (S), and electrophilicity (ω, au) versus cutoff radius (RC, au) for
the N atom confined in a spherical box using the Boeyens cutoff function method.
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A-2 Technique. Boeyens cutoff function method. Reactivity
parameters are calculated using eqs 4 and 5 augmented by a
standard ∆SCF procedure.

B-1 Technique. Dirichlet boundary condition method. Re-
activity parameters are calculated using eqs 9 and 11.

B-2 Technique. Dirichlet boundary condition method. Re-
activity parameters are calculated using eqs 4 and 5 augmented
by a standard ∆SCF procedure.

To check whether other electronic configurations correspond
to the ground state in a confined situation, we try various
configurations and use them to generate the reactivity param-
eters. For the N atom, we solve the Hartree-Fock-Slater
equation self-consistently for the 1s22s22p3, 1s22s22p23s1, and
1s22s22p13s2 configurations. In a different set for the N+ ion,
we start with (a) 1s22s22p2 and (b) 1s22s22p13s1 configurations
so that the associated (M + 1)-electron species (N atom)
corresponds to (c) 1s22s22p3, (d) 1s22s22p23s1, and (e)
1s22s22p13s2 configurations and the (M - 1)-electron species
(N2+ ion) corresponds to (f) 1s22s22p1 and (g) 1s22s23s1

configurations. Now the application of the ∆SCF technique on
M- and M ( 1- electron systems for calculating I and A values
may be envisaged in six different ways: (i) f a c, (ii) f a d, (iii)
f b d, (iv) f b e, (v) g b d, and (vi) g b e. We generate I and A
and then all of the reactivity parameters for all six combinations.

3. Results and Discussion

Figures 1-5, respectively, present the total energy (E),
electronegativity (�), hardness (η), softness (S), and electrophi-
licity (ω). Each Figure comprises four panels pertaining to the
four methods adopted here: A-1, A-2, B-1, and B-2. In all
Figures, A-1 reproduces the trends as presented in refs 1 and 2,
whereas the same trends as those presented in refs 3 and 4 are
reproduced (at least qualitatively) in B-2. An analysis of the
overall qualitative trends obtained in B-1 and A-2 vis-à-vis those
obtained in A-1 and B-2 delineates that it is the approaches 1
and 2 rather than the methods A and B that bring in discernible
qualitative changes. An F [F (r)] with proper first- and second-
order functional derivatives and a good quality f(r) may diminish
the difference between the quantitative values of a given
reactivity index using approaches 1 and 2, respectively, at least
for the very large cutoff radii.

In Figure 1, the energy increases abruptly in A-1 and B-1 as
the cutoff radius decreases; however, it does not increase as
much in A-2 and B-2 as was reported in refs 3 and 4.

Although electronegativity increases abruptly (Figure 2) for
small RC values in A-1 and B-1, it decreases for small RC values
in A-2 and B-2, as was reported in ref 3. It may be mentioned
that the � behaviors in A-2 and B-2 are different because of
different methods used. However, the change in the gross

Figure 7. Plots of total energy (E), electronegativity (�), hardness (η), softness (S), and electrophilicity (ω, au) versus cutoff radius (RC, au) for
the N atom confined in a spherical box using the Dirichlet boundary condition method.
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behavior in going from approach 1 (� increases at small RC) to
approach 2 (� decreases at small RC) is easily discernible (cf.
ref 3).

Figure 3 depicts the effect of confinement on hardness, which
increases as RC decreases in A-1 and B-1 but shows a further
decrease (cf. refs 3 and 4), followed by a nominal increase, in
A-2 and B-2. In particular, the B-2 curve shows a striking
similarity in the qualitative η behavior with that presented in
Figure 5 of ref 3. Because the results are completely numerical,
it is difficult to analyze the reasons for the differences in
qualitative trends in the four methods. It is even premature to
claim that these results can be generalized to other atomic and
molecular systems. In ref 4a, Borgoo et al. have highlighted
qualitatively different hardness trends on confinement, for
different atoms (He, Ne, Mg) and also for different molecules
(ethylene, toluene, benzene, naphthalene). Even they have
mentioned different qualitative trends in the hardness behavior
for different numerical techniques used, as in the present study.

Softness (Figure 4) and electrophilicity (Figure 5) also
reproduce reported qualitative trends if the ∆SCF technique is
used. Softness decreases and electrophilicity increases as RC

tends to zero, and both of them attain relatively small values.
Figures 6 and 7, respectively, present A-1 and B-1 results for
the N atom in three different electronic configurations, viz.,
1s22s22p3, 1s22s22p23s1, and 1s22s22p13s2. In a very small region,
we notice a crossover in the energy plot. Qualitative trends in
the � and η behavior do not change much for different
configurations, which is a bit more conspicuous in the S and ω
plots. Further work is in progress.

In a very recent article27 from a completely different perspec-
tive within a time-dependent DFT framework, it has been shown
that some of the Figures from refs 1 and 2 do appear in these

calculations as well, apart from some other Hartree-Fock
calculations mentioned in this paper.

Variation in energy with the cutoff radius of the N+ ion for
two different electronic configurations, viz., 1s22s22p2 and
1s22s22p13s1, in all four methods, that is, A-1, A-2, B-1, and
B-2, is depicted in Figure 8. Related variations in �, η, S, and
ω with the cutoff radius are presented in Figures S1-S4,
respectively (Supporting Information). The I and A values for
the A-2 and B-2 techniques are calculated in six different ways
as described above. On average, the qualitative trends do not
change much, except for the η, S, and ω plots in a couple of
cases, for example, f b d and f b e, presumably because of the
addition of a new 3s orbital in the f b combination.

4. Concluding Remarks

The effect of spherical confinement on the reactivity of atoms
and ions is reported wherein two different ways of incorporating
the pressure effects and two approaches in calculating the
reactivity parameters are used. No drastic change in qualitative
trends is observed for different electronic states in most cases.
Although the proper Dirichlet condition should be used in these
calculations, previously reported discrepancies in the results are
more due to the difference in the formulas used for the
calculation of the reactivity parameters than to the use of the
Dirichlet condition over the cutoff function method.
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Figure 8. Plots of total energy (E, au) versus cutoff radius (RC, au) for two different electronic configurations of N+ ion (red s (1s22s22p2) and
blue s (1s22s22p13s1)) confined in a spherical box.
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